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The bleomycins (BLMs) are a family of clinically used antitumor
agents exemplified by BLM A5.1 Their mechanism of action is
believed to involve oxidative cleavage of DNA and possibly also
RNA. DNA degradation has been studied extensively and shown
to involve binding of an activated metallobleomycin to DNA,2

followed by abstraction of C4′-H from deoxyribose in the rate-
limiting step3 for DNA degradation.

While DNA and RNA degradation by activated Fe•BLM has
been well studied,4,5 less is known about the actual binding
selectivity of BLM, that is, the obligatory step that precedes
cleavage. It is unclear whether cleavage specificity is defined by
the binding event or occurs at a subset of preferred binding sites.
With only a few exceptions,6 NMR binding studies have employed
metalloBLMs such as Co•BLM7 and Zn•BLM8 whose therapeutic
relevance is uncertain. A single biochemical study that compared
DNA binding and cleavage directly also employed Co•BLM.9

Herein, we describe the development and implementation of a novel
strategy to identify DNA motifs that bind BLM strongly.

The strategy used to identify BLM binding motifs is shown in
Scheme 1. A 41-nucleotide (nt) DNA substrate containing an 8-nt
randomized sequence in positions 11-18 was converted to a 64-nt
hairpin DNA containing 8 contiguous randomized base pairs via
the action of DNA polymerase (Klenow fragment10). The mixture
of hairpin DNAs was incubated with resin-bound BLM A5

11,12 in
20 mM Tris-HCl buffer, pH 7.4, for 20 min; after washing with
buffer, the bound DNA was recovered by washing the resin with
1 M NaCl and then desalted. The mixture of isolated hairpin DNAs
was digested with restriction endonucleases AseI and ApoI, then
ligated into the corresponding site of predigested plasmid pT7 Blue.
Following plasmid transformation into Escherichia coli DH5R,
several colonies containing 64-nt DNA inserts were used for
recovery of the amplified 64-nt hairpin DNAs. These were studied
for their DNA binding characteristics (vide infra), and the hairpins
of interest were sequenced (Table 1).

To evaluate the BLM binding characteristics of these DNAs,
we initially employed an assay based on inhibition of BLM A5-
mediated cleavage of a 16-nt hairpin DNA having a fluorescent
nucleoside at the site of cleavage. This fluorescent hairpin DNA
was designed based on the sequence of a highly efficient DNA

substrate for BLM2,13 and has been shown to be degraded efficiently
by BLM A5.14 Degradation resulted in a strong enhancement of
fluorescence emission (Figure 1).14,15

A solution containing BLM A5 (0.72 µM) and equimolar 64-nt
hairpin DNA was maintained at 25 °C for 20 min. This mixture
was added to a buffered solution containing fluorescent hairpin
DNA-Cf15 and maintained at 25 °C for 1 min, followed by the
addition of Fe2+ to initiate DNA cleavage. When Fe(II)•BLM A5

was bound tightly to a 64-nt hairpin DNA, the cleavage of
fluorescent hairpin DNA-Cf15 was suppressed, resulting in less
fluorescence enhancement. Figure 1 shows the fluorescence en-
hancement of hairpin DNA-Cf15 mediated by BLM A5 in the
presence and absence of 64-nt hairpin DNAs. Treatment of hairpin
DNA-Cf15 with equimolar Fe(II)•BLM A5 in the absence of 64-nt
hairpin DNA gave strong fluorescence enhancement following
excitation at 310 nm; the reaction mixture without Fe2+ showed
almost none, indicating that activated Fe•BLM mediated hairpin
DNA-Cf15 cleavage and release of the fluorescent nucleobase. In
the presence of selected hairpin DNAs 1, 2, 3, or 4, the fluorescence
enhancement was significantly inhibited while the initial random
mixture of hairpin DNAs had only a limited effect (Figure 1).

Analysis of binding specificity16 indicated that DNA 2 exhibited
97% binding, essentially reducing fluorescence enhancement to the
level produced in the absence of Fe2+. The remaining three hairpin
DNAs (1, 3, and 4) had binding specificities <75%, in comparison
with the initial randomized pool of 64-nt hairpin DNAs (specificity
∼25%) (Figure S1, Supporting Information).17 Interestingly, 1 and
4 lack 5′-GC-3′ or 5′-GT-3′ sequences that are the most typical
cleavage sites for Fe(II)•BLM.

To assess the dynamics of BLM binding by the selected hairpin
DNAs, a different experimental protocol was employed. A solution
of 0.72 µM BLM A5 and equimolar fluorescent hairpin DNA-Cf15

was preincubated at 25 °C for 20 min. This solution was then added
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Scheme 1. Strategy for Isolation of DNA Hairpin Motifs That Bind
BLM Strongly

Table 1. DNA Motifs That Bound Strongly to Resin-Linked BLM A5
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to a solution containing the same quantity of 64-nt hairpin DNA 2
in buffer. The combined solution was maintained at 25 °C for 1
min, followed by the addition of Fe2+ (Figure S2, Supporting
Information). Fluorescence enhancement was completely suppressed,
indicating that the BLM A5 prebound to the fluorescent hairpin DNA
became rebound to hairpin DNA 2 within 1 min. These results strongly
support the conclusion that the isolated hairpin DNAs bind Fe•BLM
A5 much more strongly than fluorescent hairpin DNA-Cf15, which has
been shown to be a very effective substrate for Fe•BLM.14

To determine apparent equilibrium binding constants (K) of BLM
A5 for the selected hairpin DNAs, fluorescence quenching based
on DNA binding of BLM was carried out.18 The K values of BLM
A5 for the 16-nt hairpin DNA and 2 in 10 mM Tris-HCl buffer,
pH 8.4, were 1.7 × 104 and 5.1 × 104 M-1, respectively (Table
2). In contrast, the affinity of the 64-nt hairpin DNA containing a
random sequence of 8 base pairs could not be determined due to
extremely limited quenching of bithiazole fluorescence. This was
in good qualitative agreement with the fluorescence inhibition assay
(cf Figure 1), but the strong inhibition of BLM A5-mediated
degradation of the fluorescent hairpin DNA suggests that the K
value determined for 2 may significantly understate the actual BLM
affinity of this DNA.18

The finding of strong BLM binding by a hairpin DNA (2)
containing 5′-GT-3′ and 5′-GC-3′ sites raises the question of
whether this DNA is also cleaved at those sites by Fe•BLM A5. In
fact, the anticipated cleavage of 5′-GT13-3′ and 5′-GC18-3′ was
observed by polyacrylamide gel analysis using 5′-32P end labeled
2 as a substrate (Figure S3, Supporting Information).

These experiments demonstrate the feasibility of identifying DNAs
containing strong BLM binding sites from a hairpin DNA library.
While iterative selections under increasingly stringent conditions21 were
purposefully not used, each of several isolated sequences indicated
enhanced BLM binding. Straightforward extension of this strategy can
be envisioned to enable measurement of the effects on DNA binding
resulting from defined changes in BLM structure.
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Figure 1. Emission spectra of hairpin DNA-Cf15 (0.72 µM, having the
2′-deoxyriboside of 4-aminobenzo[g]quinazoline-2-one (Cf) at position 15)
treated with 0.72 µM Fe(II)•BLM A5 (brown) and 0.72 µM BLM A5 (black)
after 30 min incubation at 25 °C in 10 mM sodium cacodylate buffer, pH
7.0, containing 100 mM NaCl (λex 310 nm). The emission spectra of hairpin
DNA-Cf15 treated with Fe(II)•BLM A5 in the presence of equimolar 1 (light
blue), 2 (blue), 3 (orange), and 4 (green) under the same conditions are
also shown to compare with 64-nt hairpin DNA containing a random
sequence of 8 base pairs (magenta) as a control.

Table 2. Apparent Equilibrium Constants of BLM A5 to Hairpin
DNAa

hairpin DNA apparent equilibrium constrants (K ×104) (M-1)

16-mer DNAb 1.7 (0.16
2 5.1 (0.56
randomc N.D.

a With 10 mM Tris-HCl buffer solution, pH 8.4. b With 16-nt hairpin
DNA, 5′-CGCTTTAAAAAAAGCG-3′. c Not determined.
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